Structures of Potassium Sodium Sulphate and Tripotassium Sodium Disulphate

By K. Okada and J. Ossaka
Department of Inorganic Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

(Received 8 October 1979; accepted 4 January 1980)

Abstract

KNaSO}_{4}\) : trigonal, $\mathrm{P} 3 m 1, a=5.6066$ (7), $c=7.177$ (1) $\AA, Z=2, D_{x}=2.69 \mathrm{Mg} \mathrm{m}^{-3}$. $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$: trigonal, $P \overline{3} m 1, a=5.6801$ (6), $c=$ 7.309 (3) $\AA, Z=1, D_{x}=2.70 \mathrm{Mg} \mathrm{m}^{-3}$. Crystals of both compounds were synthesized by heating a mixture of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a Pt crucible at 1273 K for 2 h. Colourless transparent prismatic crystals were obtained. Both structures are built up of SO_{4} tetrahedra, $M(1) \mathrm{O}_{6}$ octahedra, $M(2) \mathrm{O}_{10}$ and $M(3) \mathrm{O}_{12}$ polyhedra. In KNaSO_{4}, Na atoms occupy the $M(1)$ and $M(2)$ and K atoms the $M(2)$ and $M(3)$ sites. In $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{Na}$ atoms occupy the $M(1)$ and K atoms the $M(2)$ and $M(3)$ sites.

Introduction. From Weissenberg photographs, the crystals of KNaSO_{4} were found to have trigonal Laue symmetry $\overline{3} m$ and those of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2} 6 / \mathrm{mmm}$. Systematic absences were not observed for either substance. The possible space groups of KNaSO_{4} were restricted to $P 3 m 1, P 321$ or $P \overline{3} m 1$. The crystals of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ were considered to be merohedral twins formed from crystals having space groups $P 3 m 1, P 321$ or $P \overline{3} m 1$ in two orientations related by a rotation around the c axis. $P 3 m 1$ and $P \overline{3} m 1$ gave satisfactory results for the structure refinements of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ respectively. Intensity collections were carried out using for KNaSO_{4} a prismatic crystal with dimensions about $0.15 \times 0.05 \times 0.05 \mathrm{~mm}$ and for $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ a nearly cubic crystal with dimensions about $0.12 \times 0.12 \times 0.10 \mathrm{~mm}$. The $\omega-2 \theta$ scan technique was used to measure intensities on a Philips PW 1100 automated four-circle diffractometer, with graphite-monochromatized Mo $K \alpha$ radiation, up to 2θ $=75^{\circ}$ for KNaSO_{4} and $2 \theta=70^{\circ}$ for $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$. The scan speed was $4^{\circ} \min ^{-1}$ in ω and scanning was repeated twice when the total counts were less than 3000. The scan width was determined according to $(1.4+0.2 \tan \theta)^{\circ}$. Intensities were corrected for Lorentz-polarization factors. No absorption corrections were made, since the μR values of both crystals were less than $0.1\left[\mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.346\right.$ for KNaSO_{4} and $0.392 \mathrm{~mm}^{-1}$ for $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$]. 373 and 317 independent reflexions with $|F|>3 \sigma(|F|)$ were obtained and used for the structure determinations of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ respectively.

The positions of all atoms of KNaSO_{4} were obtained from Patterson maps. The structure was refined with the full-matrix least-squares program LINUS (Coppens \& Hamilton, 1970) and anisotropic thermal parameters for all atoms. The site populations of the Na and K atoms in the $\mathrm{K}(2)$ and $\mathrm{Na}(2)$ sites were also varied, but the existence of neither the Na atom in the $\mathrm{K}(2)$ site nor the K atom in the $\mathrm{Na}(2)$ site could be detected. The final value of R was 0.046 .

The crystal of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ used for the structure determination was assumed to be a merohedral twin formed from crystals with space group $P \overline{3} m 1$ in two orientations. Thus, the structure determination was carried out by a method similar to that used for $\mathrm{K}_{2} \mathrm{~W}_{4} \mathrm{O}_{13}$ (Okada, Marumo \& Iwai, 1978). Crystals in one orientation were related to those in the other by a rotation of 180° about the c axis. In this case, the $h k l$ reflexions of one component crystal coincide with the $k h l$ reflexions of the other in reciprocal space. The volume ratio between the crystals in the two orientations was assumed to be $1: 1$ because all the specimens examined always gave diffraction patterns with hexagonal Laue symmetry $6 / \mathrm{mmm}$. The parameters were refined by the least-squares procedure, using $h k 0$ and $h h l$ data of 57 reflexions which were not

Table 1. Final positional parameters

	x	y	z
$(a) \mathrm{KNaSO}_{4}$			
$\mathrm{~K}(3)$	0	0	0
$\mathrm{Na}(1)$	0	0	$0.504(3)$
$\mathrm{Na}(2)$	$\frac{2}{3}$	$\frac{1}{3}$	$0.689(2)$
$\mathrm{K}(2)$	$\frac{1}{3}$	$\frac{2}{3}$	$0.309(2)$
$\mathrm{S}(1)$	$\frac{2}{3}$	$\frac{1}{3}$	$0.234(1)$
$\mathrm{S}(2)$	$\frac{1}{3}$	$\frac{2}{3}$	$0.764(1)$
$\mathrm{O}(1)$	$\frac{2}{3}$	$\frac{1}{3}$	$0.026(2)$
$\mathrm{O}(2)$	$0.187(1)$	-0.187	$0.955(4)$
$\mathrm{O}(3)$	$0.80(2)$		
$\mathrm{O}(4)$	$0.803(1)$	-0.803	$0.314(2)$
$(b) \mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$			
$\mathrm{~K}(3)$	0		
Na	0	0	0
$\mathrm{~K}(2)$	$\frac{1}{3}$	0	
S		$\frac{2}{3}$	$\frac{1}{3}$
$\mathrm{O}(1)$	$\frac{2}{3}$	$\frac{1}{3}$	$0.6831(2)$
$\mathrm{O}(2)$	$0.8073(3)$	-0.8073	$0.2338(2)$

influenced by the twinning, and used for the calculation of the structure factors of all the observed reflexions. Each of the observed intensities was then separated into the contributions from the crystals in the respective orientations according to:

$$
\begin{aligned}
& \left|F_{o}(h k l)\right|^{2}=\frac{\left[\left|F_{o}(h k l)\right|^{2}+\left|F_{o}(k h l)\right|^{2}\right]\left|F_{c}(h k l)\right|^{2}}{\left[\left|F_{c}(h k l)\right|^{2}+\left|F_{c}(k h l)\right|^{2}\right]}, \\
& \left|F_{o}(k h l)\right|^{2}=\left[\left|F_{o}(h k l)\right|^{2}+\left|F_{o}(k h l)\right|^{2}\right]-\left|F_{o}(h k l)\right|^{2} .
\end{aligned}
$$

Table 2. Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ (a) KNaSO_{4}

The structure was then refined with all the reflexion data by means of the least-squares procedure. The final value of R became 0.042 with anisotropic thermal parameters for all atoms. The atomic scattering and dispersion factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974). Final positional parameters of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ are given in Table 1.* Interatomic distances and bond angles of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ are given in Table 2.

Discussion. It has been reported by Eysel (1973) that 'the glaserite $\left[(\mathrm{K}, \mathrm{Na})_{2} \mathrm{SO}_{4}\right]$ structure and its deformed derivatives have been found or can be predicted for $(A, C)_{2} B X_{4}$ solid solutions'. In fact, there are many substances which are reported to be isostructural with the glaserite structure. A structure determination of this type has been reported by Okada, Ossaka \& Iwai (1979) for $\mathrm{Tl}_{2} \mathrm{WO}_{4}$; however, a structural investigation of the glaserite $\left[(\mathrm{K}, \mathrm{Na})_{2} \mathrm{SO}_{4}\right]$ has not yet been made.

The structures of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ viewed along the c and a axes are shown in Figs. 1 and 2 respectively. Both structures are built up of SO_{4} tetrahedra, $M(1) \mathrm{O}_{6}$ octahedra, $M(2) \mathrm{O}_{10}$ and $M(3) \mathrm{O}_{12}$ polyhedra. The apices of neighbouring SO_{4} tetrahedra point in opposite directions along the c axis. The $\mathrm{S}(1)-\mathrm{O}$ and $\mathrm{S}(2)-\mathrm{O}$ distances in KNaSO_{4} range from 1.368 (29) to $1.496(20) \AA$ (means 1.454 and 1.451 \AA), while the $\mathrm{S}-\mathrm{O}$ distances in $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ are $1.477(6)$ and $1.470(2) \AA$ (mean $1.472 \AA$). In KNaSO_{4} the $\mathrm{O}-\mathrm{S}(1)-\mathrm{O}$ angles are $105 \cdot 1$ (7) and $113.5(7)^{\circ}$, and the $\mathrm{O}-\mathrm{S}(2)-\mathrm{O}$ angles are 105.4 (6) and $113.2(5)^{\circ}$. $\mathrm{In}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles are 109.2 (1) and $109.8(1)^{\circ}$. The distortions of the $\mathrm{S}(1) \mathrm{O}_{4}$ and $\mathrm{S}(2) \mathrm{O}_{4}$ tetrahedra of KNaSO_{4} are very large, whereas that of the SO_{4} tetrahedron of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ is very small. The $M(1)$ sites of both substances are occupied by Na atoms. The $\mathrm{Na}(1)-\mathrm{O}$ distances in

Fig. 1. The crystal structures of $(a) \mathrm{KNaSO}_{4}$ and $(b) \mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ viewed along the c axis. The numbers give the heights of atoms $\left(\times 10^{2}\right)$ in decimal fractions of the c length. Large open circles denote K , medium open circles denote O and Na , and small open circles denote S atoms.
KNaSO_{4} are $2 \cdot 340$ (16) and $2 \cdot 349$ (15) \AA (mean $2.345 \AA$), and the $\mathrm{Na}-\mathrm{O}$ distance in $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ is 2.386 (2) \AA. The $M(2)$ sites of KNaSO_{4} are occupied by K and Na atoms, while those of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ are occupied only by K atoms. The $\mathrm{Na}(2)-\mathrm{O}$ distances range from 2.419 (21) to 2.994 (19) \AA (mean $2.829 \AA$) and the $\mathrm{K}(2)-\mathrm{O}$ distances range from 2.537 (29) to 3.213 (17) \AA (mean $2.909 \AA$) in KNaSO_{4}. The $\mathrm{K}(2)-\mathrm{O}$ distances of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ range from $2 \cdot 547$ (6) to 3.112 (3) \AA (mean $2.901 \AA$). There are fairly short $\mathrm{Na}-\mathrm{O}$ and $\mathrm{K}-\mathrm{O}$ distances in each $M(2) \mathrm{O}_{10}$ polyhedron. The $M(3)$ sites of both substances are occupied by K atoms. The $\mathrm{K}(3)-\mathrm{O}$ distances of KNaSO_{4} range from 2.761 (12) to 3.253 (3) \AA (mean $3.054 \AA$), while those of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ are 2.908 (2) and 3.288 (1) \AA (mean $3.098 \AA$).

The crystal structure of glaserite has been postulated by many workers. Moore (1973) considered that the formal composition of glaserite could be written as $\left.M(3){ }^{[12]} M(2)\right)_{2}^{[10]} M(1)^{[6]}\left[T^{[4]} \mathrm{O}_{4}\right]_{2}$ and that K atoms

Fig. 2. The crystal structures of (a) KNaSO_{4} and $(b) \mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ viewed along the a axis. The numbers give the heights of atoms ($\times 10^{2}$) in decimal fractions of the a length. The atoms are depicted as in Fig. 1.
occupy the $M(2)$ sites and Na atoms the $M(1)$ and $M(3)$ sites in KNaSO_{4}. Eysel (1973), however, considered that K atoms first fill the $M(3)$ and then the $M(2)$ sites. Our structure determinations of KNaSO_{4} and $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$ show that K atoms first fill the $M(3)$ and then go into the $M(2)$ sites while Na atoms first fill the $M(1)$ and then the $M(2)$ sites. This result is in line with the propositions of Eysel (1973) but not with those of Moore (1973). As the Na and K atoms in the $M(2)$ sites in KNaSO_{4} are ordered, the space group of KNaSO_{4} must be $P 3 m 1$ and not $P \overline{3} m \mathrm{l}$. Therefore, the formal composition of KNaSO_{4} is written as $M(3)^{[12]}$ $M(2){ }^{[10]} M\left(2^{\prime}\right){ }^{[10]} M(1)^{[6]}\left[T^{[4]} \mathrm{O}_{4}\right]_{2}$. It can be considered that the structure of KNaSO_{4} is an ordered derivative of glaserite and that there is a slight discontinuity between the structure of KNaSO_{4} and that of $\mathrm{K}_{3} \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$.

We are grateful to Professor M. Kato for allowing us to use an automated diffractometer at the Tokyo Institute of Technology. Computations were carried out on an M-180 computer at the Computer Centre of the Tokyo Institute of Technology.

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Eysel, W. (1973). Am. Mineral. 58, 736-747.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press. Moore, P. B. (1973). Am. Mineral. 58, 32-42.
Okada, K., Marumo, F. \& Iwai, S. (1978). Acta Cryst. B34, 3193-3195.
Okada, K., Ossaka, J. \& Iwai, S. (1979). Acta Cryst. B35, 2189-2191.

Acta Cryst. (1980). B36, 921-924

α-Calcium Disodium Pyrophosphate Tetrahydrate

By P.-T. Cheng and K. P. H. Pritzker
Division of Pathology, Mount Sinai Hospital, Toronto, Canada M5G 1 X5

and S. C. Nyburg
Lash Miller Chemical Laboratories, University of Toronto, Toronto, Canada M5S 1A1
(Received 11 September 1979; accepted 10 January 1980)

Abstract

CaNa}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}, M_{r}=332 \cdot 0\), monoclinic, $P c, a=5.689$ (6), $b=8 \cdot 586$ (8), $c=10 \cdot 565$ (9) $\AA, \beta=106.3(1)^{\circ}, Z=2, D_{c}=2.08 \mathrm{Mg} \mathrm{m}^{-3}$ (not

measured), $\mu(\mathrm{Cu} K \alpha)=9.09 \mathrm{~mm}^{-1}$. The structure reported is one of three known polymorphs. The α and β structures contain almost identical parallel $\mathrm{Ca}^{2+} \ldots$ © 1980 International Union of Crystallography

